jackdbus/example-clients/alsa_out.c

843 lines
24 KiB
C

/** @file simple_client.c
*
* @brief This simple client demonstrates the basic features of JACK
* as they would be used by many applications.
*/
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <math.h>
#include <jack/jack.h>
#include <jack/jslist.h>
#include "memops.h"
#include "alsa/asoundlib.h"
#include <samplerate.h>
// Here are the lists of the jack ports...
JSList *capture_ports = NULL;
JSList *capture_srcs = NULL;
JSList *playback_ports = NULL;
JSList *playback_srcs = NULL;
jack_client_t *client;
snd_pcm_t *alsa_handle;
int jack_sample_rate;
int jack_buffer_size;
int quit = 0;
double resample_mean = 1.0;
double static_resample_factor = 1.0;
double resample_lower_limit = 0.25;
double resample_upper_limit = 4.0;
double *offset_array;
double *window_array;
int offset_differential_index = 0;
double offset_integral = 0;
// ------------------------------------------------------ commandline parameters
int sample_rate = 0; /* stream rate */
int num_channels = 2; /* count of channels */
int period_size = 1024;
int num_periods = 2;
int target_delay = 0; /* the delay which the program should try to approach. */
int max_diff = 0; /* the diff value, when a hard readpointer skip should occur */
int catch_factor = 100000;
int catch_factor2 = 10000;
double pclamp = 15.0;
double controlquant = 10000.0;
int smooth_size = 256;
int good_window=0;
int verbose = 0;
int instrument = 0;
int samplerate_quality = 2;
// Debug stuff:
volatile float output_resampling_factor = 1.0;
volatile int output_new_delay = 0;
volatile float output_offset = 0.0;
volatile float output_integral = 0.0;
volatile float output_diff = 0.0;
volatile int running_freewheel = 0;
snd_pcm_uframes_t real_buffer_size;
snd_pcm_uframes_t real_period_size;
// buffers
char *tmpbuf;
char *outbuf;
float *resampbuf;
// format selection, and corresponding functions from memops in a nice set of structs.
typedef struct alsa_format {
snd_pcm_format_t format_id;
size_t sample_size;
void (*jack_to_soundcard) (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state);
void (*soundcard_to_jack) (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip);
const char *name;
} alsa_format_t;
alsa_format_t formats[] = {
{ SND_PCM_FORMAT_FLOAT_LE, 4, sample_move_dS_floatLE, sample_move_floatLE_sSs, "float" },
{ SND_PCM_FORMAT_S32, 4, sample_move_d32u24_sS, sample_move_dS_s32u24, "32bit" },
{ SND_PCM_FORMAT_S24_3LE, 3, sample_move_d24_sS, sample_move_dS_s24, "24bit - real" },
{ SND_PCM_FORMAT_S24, 4, sample_move_d24_sS, sample_move_dS_s24, "24bit" },
{ SND_PCM_FORMAT_S16, 2, sample_move_d16_sS, sample_move_dS_s16, "16bit" }
#ifdef __ANDROID__
,{ SND_PCM_FORMAT_S16_LE, 2, sample_move_d16_sS, sample_move_dS_s16, "16bit little-endian" }
#endif
};
#define NUMFORMATS (sizeof(formats)/sizeof(formats[0]))
int format=0;
// Alsa stuff... i don't want to touch this bullshit in the next years.... please...
static int xrun_recovery(snd_pcm_t *handle, int err) {
// printf( "xrun !!!.... %d\n", err );
if (err == -EPIPE) { /* under-run */
err = snd_pcm_prepare(handle);
if (err < 0)
printf("Can't recovery from underrun, prepare failed: %s\n", snd_strerror(err));
return 0;
} else if (err == -ESTRPIPE) {
while ((err = snd_pcm_resume(handle)) == -EAGAIN)
usleep(100); /* wait until the suspend flag is released */
if (err < 0) {
err = snd_pcm_prepare(handle);
if (err < 0)
printf("Can't recovery from suspend, prepare failed: %s\n", snd_strerror(err));
}
return 0;
}
return err;
}
static int set_hwformat( snd_pcm_t *handle, snd_pcm_hw_params_t *params )
{
#ifdef __ANDROID__
format = 5;
snd_pcm_hw_params_set_format(handle, params, formats[format].format_id);
return 0;
#else
int i;
int err;
for( i=0; i<NUMFORMATS; i++ ) {
/* set the sample format */
err = snd_pcm_hw_params_set_format(handle, params, formats[i].format_id);
if (err == 0) {
format = i;
return 0;
}
}
return err;
#endif
}
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, snd_pcm_access_t access, int rate, int channels, int period, int nperiods ) {
int err, dir=0;
unsigned int buffer_time;
unsigned int period_time;
unsigned int rrate;
unsigned int rchannels;
/* choose all parameters */
err = snd_pcm_hw_params_any(handle, params);
if (err < 0) {
printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
return err;
}
/* set the interleaved read/write format */
err = snd_pcm_hw_params_set_access(handle, params, access);
if (err < 0) {
printf("Access type not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the sample format */
err = set_hwformat(handle, params);
if (err < 0) {
printf("Sample format not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the count of channels */
rchannels = channels;
err = snd_pcm_hw_params_set_channels_near(handle, params, &rchannels);
if (err < 0) {
printf("Channels count (%i) not available for record: %s\n", channels, snd_strerror(err));
return err;
}
if (rchannels != channels) {
printf("WARNING: chennel count does not match (requested %d got %d)\n", channels, rchannels);
num_channels = rchannels;
}
/* set the stream rate */
rrate = rate;
err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
if (err < 0) {
printf("Rate %iHz not available for playback: %s\n", rate, snd_strerror(err));
return err;
}
if (rrate != rate) {
printf("Rate doesn't match (requested %iHz, get %iHz)\n", rate, rrate);
return -EINVAL;
}
/* set the buffer time */
buffer_time = 1000000*(uint64_t)period*nperiods/rate;
err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);
if (err < 0) {
printf("Unable to set buffer time %i for playback: %s\n", 1000000*period*nperiods/rate, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_buffer_size( params, &real_buffer_size );
if (err < 0) {
printf("Unable to get buffer size back: %s\n", snd_strerror(err));
return err;
}
if( real_buffer_size != nperiods * period ) {
printf( "WARNING: buffer size does not match: (requested %d, got %d)\n", nperiods * period, (int) real_buffer_size );
}
/* set the period time */
period_time = 1000000*(uint64_t)period/rate;
err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);
if (err < 0) {
printf("Unable to set period time %i for playback: %s\n", 1000000*period/rate, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_period_size(params, &real_period_size, NULL );
if (err < 0) {
printf("Unable to get period size back: %s\n", snd_strerror(err));
return err;
}
if( real_period_size != period ) {
printf( "WARNING: period size does not match: (requested %i, got %i)\n", period, (int)real_period_size );
}
/* write the parameters to device */
err = snd_pcm_hw_params(handle, params);
if (err < 0) {
printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
return err;
}
return 0;
}
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams, int period, int nperiods) {
int err;
/* get the current swparams */
err = snd_pcm_sw_params_current(handle, swparams);
if (err < 0) {
printf("Unable to determine current swparams for capture: %s\n", snd_strerror(err));
return err;
}
/* start the transfer when the buffer is full */
err = snd_pcm_sw_params_set_start_threshold(handle, swparams, period );
if (err < 0) {
printf("Unable to set start threshold mode for capture: %s\n", snd_strerror(err));
return err;
}
err = snd_pcm_sw_params_set_stop_threshold(handle, swparams, -1 );
if (err < 0) {
printf("Unable to set start threshold mode for capture: %s\n", snd_strerror(err));
return err;
}
/* allow the transfer when at least period_size samples can be processed */
err = snd_pcm_sw_params_set_avail_min(handle, swparams, 1 );
if (err < 0) {
printf("Unable to set avail min for capture: %s\n", snd_strerror(err));
return err;
}
/* align all transfers to 1 sample */
err = snd_pcm_sw_params_set_xfer_align(handle, swparams, 1);
if (err < 0) {
printf("Unable to set transfer align for capture: %s\n", snd_strerror(err));
return err;
}
/* write the parameters to the playback device */
err = snd_pcm_sw_params(handle, swparams);
if (err < 0) {
printf("Unable to set sw params for capture: %s\n", snd_strerror(err));
return err;
}
return 0;
}
// ok... i only need this function to communicate with the alsa bloat api...
static snd_pcm_t *open_audiofd( char *device_name, int capture, int rate, int channels, int period, int nperiods ) {
int err;
snd_pcm_t *handle;
snd_pcm_hw_params_t *hwparams;
snd_pcm_sw_params_t *swparams;
snd_pcm_hw_params_alloca(&hwparams);
snd_pcm_sw_params_alloca(&swparams);
if ((err = snd_pcm_open(&(handle), device_name, capture ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK )) < 0) {
printf("Capture open error: %s\n", snd_strerror(err));
return NULL;
}
if ((err = set_hwparams(handle, hwparams,SND_PCM_ACCESS_RW_INTERLEAVED, rate, channels, period, nperiods )) < 0) {
printf("Setting of hwparams failed: %s\n", snd_strerror(err));
return NULL;
}
if ((err = set_swparams(handle, swparams, period, nperiods)) < 0) {
printf("Setting of swparams failed: %s\n", snd_strerror(err));
return NULL;
}
//snd_pcm_start( handle );
//snd_pcm_wait( handle, 200 );
int num_null_samples = nperiods * period * channels;
char *tmp = alloca( num_null_samples * formats[format].sample_size );
memset( tmp, 0, num_null_samples * formats[format].sample_size );
snd_pcm_writei( handle, tmp, num_null_samples );
return handle;
}
double hann( double x )
{
return 0.5 * (1.0 - cos( 2*M_PI * x ) );
}
/**
* The freewheel callback.
*/
void freewheel (int starting, void* arg) {
running_freewheel = starting;
}
/**
* The process callback for this JACK application.
* It is called by JACK at the appropriate times.
*/
int process (jack_nframes_t nframes, void *arg) {
if (running_freewheel) {
JSList *node = playback_ports;
while ( node != NULL)
{
jack_port_t *port = (jack_port_t *) node->data;
float *buf = jack_port_get_buffer (port, nframes);
memset(buf, 0, sizeof(float)*nframes);
node = jack_slist_next (node);
}
return 0;
}
int rlen;
int err;
snd_pcm_sframes_t delay = target_delay;
int i;
delay = (num_periods*period_size)-snd_pcm_avail( alsa_handle ) ;
delay -= round( jack_frames_since_cycle_start( client ) * static_resample_factor );
// Do it the hard way.
// this is for compensating xruns etc...
if( delay > (target_delay+max_diff) ) {
snd_pcm_rewind( alsa_handle, delay - target_delay );
output_new_delay = (int) delay;
delay = target_delay;
// Set the resample_rate... we need to adjust the offset integral, to do this.
// first look at the PI controller, this code is just a special case, which should never execute once
// everything is swung in.
offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
// Also clear the array. we are beginning a new control cycle.
for( i=0; i<smooth_size; i++ )
offset_array[i] = 0.0;
}
if( delay < (target_delay-max_diff) ) {
output_new_delay = (int) delay;
while ((target_delay-delay) > 0) {
snd_pcm_uframes_t to_write = ((target_delay-delay) > 512) ? 512 : (target_delay-delay);
snd_pcm_writei( alsa_handle, tmpbuf, to_write );
delay += to_write;
}
delay = target_delay;
// Set the resample_rate... we need to adjust the offset integral, to do this.
offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
// Also clear the array. we are beginning a new control cycle.
for( i=0; i<smooth_size; i++ )
offset_array[i] = 0.0;
}
/* ok... now we should have target_delay +- max_diff on the alsa side.
*
* calculate the number of frames, we want to get.
*/
double offset = delay - target_delay;
// Save offset.
offset_array[(offset_differential_index++)% smooth_size ] = offset;
// Build the mean of the windowed offset array
// basically fir lowpassing.
double smooth_offset = 0.0;
for( i=0; i<smooth_size; i++ )
smooth_offset +=
offset_array[ (i + offset_differential_index-1) % smooth_size] * window_array[i];
smooth_offset /= (double) smooth_size;
// this is the integral of the smoothed_offset
offset_integral += smooth_offset;
// Clamp offset.
// the smooth offset still contains unwanted noise
// which would go straigth onto the resample coeff.
// it only used in the P component and the I component is used for the fine tuning anyways.
if( fabs( smooth_offset ) < pclamp )
smooth_offset = 0.0;
// ok. now this is the PI controller.
// u(t) = K * ( e(t) + 1/T \int e(t') dt' )
// K = 1/catch_factor and T = catch_factor2
double current_resample_factor = static_resample_factor - smooth_offset / (double) catch_factor - offset_integral / (double) catch_factor / (double)catch_factor2;
// now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
current_resample_factor = floor( (current_resample_factor - resample_mean) * controlquant + 0.5 ) / controlquant + resample_mean;
// Output "instrumentatio" gonna change that to real instrumentation in a few.
output_resampling_factor = (float) current_resample_factor;
output_diff = (float) smooth_offset;
output_integral = (float) offset_integral;
output_offset = (float) offset;
// Clamp a bit.
if( current_resample_factor < resample_lower_limit ) current_resample_factor = resample_lower_limit;
if( current_resample_factor > resample_upper_limit ) current_resample_factor = resample_upper_limit;
// Now Calculate how many samples we need.
rlen = ceil( ((double)nframes) * current_resample_factor )+2;
assert( rlen > 2 );
// Calculate resample_mean so we can init ourselves to saner values.
resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
/*
* now this should do it...
*/
outbuf = alloca( rlen * formats[format].sample_size * num_channels );
resampbuf = alloca( rlen * sizeof( float ) );
/*
* render jack ports to the outbuf...
*/
int chn = 0;
JSList *node = playback_ports;
JSList *src_node = playback_srcs;
SRC_DATA src;
while ( node != NULL)
{
jack_port_t *port = (jack_port_t *) node->data;
float *buf = jack_port_get_buffer (port, nframes);
SRC_STATE *src_state = src_node->data;
src.data_in = buf;
src.input_frames = nframes;
src.data_out = resampbuf;
src.output_frames = rlen;
src.end_of_input = 0;
src.src_ratio = current_resample_factor;
src_process( src_state, &src );
formats[format].jack_to_soundcard( outbuf + format[formats].sample_size * chn, resampbuf, src.output_frames_gen, num_channels*format[formats].sample_size, NULL);
src_node = jack_slist_next (src_node);
node = jack_slist_next (node);
chn++;
}
// now write the output...
again:
err = snd_pcm_writei(alsa_handle, outbuf, src.output_frames_gen);
//err = snd_pcm_writei(alsa_handle, outbuf, src.output_frames_gen);
if( err < 0 ) {
printf( "err = %d\n", err );
if (xrun_recovery(alsa_handle, err) < 0) {
printf("Write error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
goto again;
}
return 0;
}
/**
* the latency callback.
* sets up the latencies on the ports.
*/
void
latency_cb (jack_latency_callback_mode_t mode, void *arg)
{
jack_latency_range_t range;
JSList *node;
range.min = range.max = round(target_delay / static_resample_factor);
if (mode == JackCaptureLatency) {
for (node = capture_ports; node; node = jack_slist_next (node)) {
jack_port_t *port = node->data;
jack_port_set_latency_range (port, mode, &range);
}
} else {
for (node = playback_ports; node; node = jack_slist_next (node)) {
jack_port_t *port = node->data;
jack_port_set_latency_range (port, mode, &range);
}
}
}
/**
* Allocate the necessary jack ports...
*/
void alloc_ports( int n_capture, int n_playback ) {
int port_flags = JackPortIsOutput | JackPortIsPhysical | JackPortIsTerminal;
int chn;
jack_port_t *port;
char buf[32];
capture_ports = NULL;
for (chn = 0; chn < n_capture; chn++)
{
snprintf (buf, sizeof(buf) - 1, "capture_%u", chn+1);
port = jack_port_register (client, buf,
JACK_DEFAULT_AUDIO_TYPE,
port_flags, 0);
if (!port)
{
printf( "jacknet_client: cannot register port for %s", buf);
break;
}
capture_srcs = jack_slist_append( capture_srcs, src_new( 4-samplerate_quality, 1, NULL ) );
capture_ports = jack_slist_append (capture_ports, port);
}
port_flags = JackPortIsInput;
playback_ports = NULL;
for (chn = 0; chn < n_playback; chn++)
{
snprintf (buf, sizeof(buf) - 1, "playback_%u", chn+1);
port = jack_port_register (client, buf,
JACK_DEFAULT_AUDIO_TYPE,
port_flags, 0);
if (!port)
{
printf( "jacknet_client: cannot register port for %s", buf);
break;
}
playback_srcs = jack_slist_append( playback_srcs, src_new( 4-samplerate_quality, 1, NULL ) );
playback_ports = jack_slist_append (playback_ports, port);
}
}
/**
* This is the shutdown callback for this JACK application.
* It is called by JACK if the server ever shuts down or
* decides to disconnect the client.
*/
void jack_shutdown (void *arg) {
exit (1);
}
/**
* be user friendly.
* be user friendly.
* be user friendly.
*/
void printUsage() {
fprintf(stderr, "usage: alsa_out [options]\n"
"\n"
" -j <jack name> - client name\n"
" -d <alsa_device> \n"
" -c <channels> \n"
" -p <period_size> \n"
" -n <num_period> \n"
" -r <sample_rate> \n"
" -q <sample_rate quality [0..4]\n"
" -m <max_diff> \n"
" -t <target_delay> \n"
" -i turns on instrumentation\n"
" -v turns on printouts\n"
"\n");
}
/**
* the main function....
*/
void
sigterm_handler( int signal )
{
quit = 1;
}
int main (int argc, char *argv[]) {
char jack_name[30] = "alsa_out";
char alsa_device[30] = "hw:0";
extern char *optarg;
extern int optind, optopt;
int errflg=0;
int c;
while ((c = getopt(argc, argv, "ivj:r:c:p:n:d:q:m:t:f:F:C:Q:s:")) != -1) {
switch(c) {
case 'j':
strcpy(jack_name,optarg);
break;
case 'r':
sample_rate = atoi(optarg);
break;
case 'c':
num_channels = atoi(optarg);
break;
case 'p':
period_size = atoi(optarg);
break;
case 'n':
num_periods = atoi(optarg);
break;
case 'd':
strcpy(alsa_device,optarg);
break;
case 't':
target_delay = atoi(optarg);
break;
case 'q':
samplerate_quality = atoi(optarg);
break;
case 'm':
max_diff = atoi(optarg);
break;
case 'f':
catch_factor = atoi(optarg);
break;
case 'F':
catch_factor2 = atoi(optarg);
break;
case 'C':
pclamp = (double) atoi(optarg);
break;
case 'Q':
controlquant = (double) atoi(optarg);
break;
case 'v':
verbose = 1;
break;
case 'i':
instrument = 1;
break;
case 's':
smooth_size = atoi(optarg);
break;
case ':':
fprintf(stderr,
"Option -%c requires an operand\n", optopt);
errflg++;
break;
case '?':
fprintf(stderr,
"Unrecognized option: -%c\n", optopt);
errflg++;
}
}
if (errflg) {
printUsage();
exit(2);
}
if( (samplerate_quality < 0) || (samplerate_quality > 4) ) {
fprintf (stderr, "invalid samplerate quality\n");
return 1;
}
if ((client = jack_client_open (jack_name, 0, NULL)) == 0) {
fprintf (stderr, "jack server not running?\n");
return 1;
}
/* tell the JACK server to call `process()' whenever
there is work to be done.
*/
jack_set_process_callback (client, process, 0);
/* tell the JACK server to call `freewheel()' whenever
freewheel mode changes.
*/
jack_set_freewheel_callback (client, freewheel, 0);
/* tell the JACK server to call `jack_shutdown()' if
it ever shuts down, either entirely, or if it
just decides to stop calling us.
*/
jack_on_shutdown (client, jack_shutdown, 0);
if (jack_set_latency_callback)
jack_set_latency_callback (client, latency_cb, 0);
// get jack sample_rate
jack_sample_rate = jack_get_sample_rate( client );
if( !sample_rate )
sample_rate = jack_sample_rate;
static_resample_factor = (double) sample_rate / (double) jack_sample_rate;
resample_lower_limit = static_resample_factor * 0.25;
resample_upper_limit = static_resample_factor * 4.0;
resample_mean = static_resample_factor;
offset_array = malloc( sizeof(double) * smooth_size );
if( offset_array == NULL ) {
fprintf( stderr, "no memory for offset_array !!!\n" );
exit(20);
}
window_array = malloc( sizeof(double) * smooth_size );
if( window_array == NULL ) {
fprintf( stderr, "no memory for window_array !!!\n" );
exit(20);
}
int i;
for( i=0; i<smooth_size; i++ ) {
offset_array[i] = 0.0;
window_array[i] = hann( (double) i / ((double) smooth_size - 1.0) );
}
jack_buffer_size = jack_get_buffer_size( client );
// Setup target delay and max_diff for the normal user, who does not play with them...
if( !target_delay )
target_delay = (num_periods*period_size / 2) - jack_buffer_size/2;
if( !max_diff )
max_diff = target_delay;
if( max_diff > target_delay ) {
fprintf( stderr, "target_delay (%d) cant be smaller than max_diff(%d)\n", target_delay, max_diff );
exit(20);
}
if( (target_delay+max_diff) > (num_periods*period_size) ) {
fprintf( stderr, "target_delay+max_diff (%d) cant be bigger than buffersize(%d)\n", target_delay+max_diff, num_periods*period_size );
exit(20);
}
// now open the alsa fd...
alsa_handle = open_audiofd( alsa_device, 0, sample_rate, num_channels, period_size, num_periods);
if( alsa_handle == 0 )
exit(20);
printf( "selected sample format: %s\n", formats[format].name );
// alloc input ports, which are blasted out to alsa...
alloc_ports( 0, num_channels );
outbuf = malloc( num_periods * period_size * formats[format].sample_size * num_channels );
resampbuf = malloc( num_periods * period_size * sizeof( float ) );
tmpbuf = malloc( 512 * formats[format].sample_size * num_channels );
if ((outbuf == NULL) || (resampbuf == NULL) || (tmpbuf == NULL))
{
fprintf( stderr, "no memory for buffers.\n" );
exit(20);
}
/* tell the JACK server that we are ready to roll */
if (jack_activate (client)) {
fprintf (stderr, "cannot activate client");
return 1;
}
signal( SIGTERM, sigterm_handler );
signal( SIGINT, sigterm_handler );
if( verbose ) {
while(!quit) {
usleep(500000);
if( output_new_delay ) {
printf( "delay = %d\n", output_new_delay );
output_new_delay = 0;
}
printf( "res: %f, \tdiff = %f, \toffset = %f \n", output_resampling_factor, output_diff, output_offset );
}
} else if( instrument ) {
printf( "# n\tresamp\tdiff\toffseti\tintegral\n");
int n=0;
while(!quit) {
usleep(1000);
printf( "%d\t%f\t%f\t%f\t%f\n", n++, output_resampling_factor, output_diff, output_offset, output_integral );
}
} else {
while(!quit)
{
usleep(500000);
if( output_new_delay ) {
printf( "delay = %d\n", output_new_delay );
output_new_delay = 0;
}
}
}
jack_deactivate( client );
jack_client_close (client);
exit (0);
}