jack2/common/JackNetTool.cpp

1391 lines
52 KiB
C++

/*
Copyright (C) 2008-2011 Romain Moret at Grame
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "JackNetTool.h"
#include "JackError.h"
#ifdef __APPLE__
#include <mach/mach_time.h>
class HardwareClock
{
public:
HardwareClock();
void Reset();
void Update();
float GetDeltaTime() const;
double GetTime() const;
private:
double m_clockToSeconds;
uint64_t m_startAbsTime;
uint64_t m_lastAbsTime;
double m_time;
float m_deltaTime;
};
HardwareClock::HardwareClock()
{
mach_timebase_info_data_t info;
mach_timebase_info(&info);
m_clockToSeconds = (double)info.numer/info.denom/1000000000.0;
Reset();
}
void HardwareClock::Reset()
{
m_startAbsTime = mach_absolute_time();
m_lastAbsTime = m_startAbsTime;
m_time = m_startAbsTime*m_clockToSeconds;
m_deltaTime = 1.0f/60.0f;
}
void HardwareClock::Update()
{
const uint64_t currentTime = mach_absolute_time();
const uint64_t dt = currentTime - m_lastAbsTime;
m_time = currentTime*m_clockToSeconds;
m_deltaTime = (double)dt*m_clockToSeconds;
m_lastAbsTime = currentTime;
}
float HardwareClock::GetDeltaTime() const
{
return m_deltaTime;
}
double HardwareClock::GetTime() const
{
return m_time;
}
#endif
using namespace std;
namespace Jack
{
// NetMidiBuffer**********************************************************************************
NetMidiBuffer::NetMidiBuffer(session_params_t* params, uint32_t nports, char* net_buffer)
{
fNPorts = nports;
fMaxBufsize = fNPorts * sizeof(sample_t) * params->fPeriodSize;
fMaxPcktSize = params->fMtu - sizeof(packet_header_t);
fBuffer = new char[fMaxBufsize];
fPortBuffer = new JackMidiBuffer* [fNPorts];
for (int port_index = 0; port_index < fNPorts; port_index++) {
fPortBuffer[port_index] = NULL;
}
fNetBuffer = net_buffer;
fCycleBytesSize = params->fMtu
* (max(params->fSendMidiChannels, params->fReturnMidiChannels)
* params->fPeriodSize * sizeof(sample_t) / (params->fMtu - sizeof(packet_header_t)));
}
NetMidiBuffer::~NetMidiBuffer()
{
delete[] fBuffer;
delete[] fPortBuffer;
}
size_t NetMidiBuffer::GetCycleSize()
{
return fCycleBytesSize;
}
int NetMidiBuffer::GetNumPackets(int data_size, int max_size)
{
int res1 = data_size % max_size;
int res2 = data_size / max_size;
return (res1) ? res2 + 1 : res2;
}
void NetMidiBuffer::SetBuffer(int index, JackMidiBuffer* buffer)
{
fPortBuffer[index] = buffer;
}
JackMidiBuffer* NetMidiBuffer::GetBuffer(int index)
{
return fPortBuffer[index];
}
void NetMidiBuffer::DisplayEvents()
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
for (uint event = 0; event < fPortBuffer[port_index]->event_count; event++) {
if (fPortBuffer[port_index]->IsValid()) {
jack_info("port %d : midi event %u/%u -> time : %u, size : %u",
port_index + 1, event + 1, fPortBuffer[port_index]->event_count,
fPortBuffer[port_index]->events[event].time, fPortBuffer[port_index]->events[event].size);
}
}
}
}
int NetMidiBuffer::RenderFromJackPorts()
{
int pos = 0;
size_t copy_size;
for (int port_index = 0; port_index < fNPorts; port_index++) {
char* write_pos = fBuffer + pos;
copy_size = sizeof(JackMidiBuffer) + fPortBuffer[port_index]->event_count * sizeof(JackMidiEvent);
memcpy(fBuffer + pos, fPortBuffer[port_index], copy_size);
pos += copy_size;
memcpy(fBuffer + pos,
fPortBuffer[port_index] + (fPortBuffer[port_index]->buffer_size - fPortBuffer[port_index]->write_pos),
fPortBuffer[port_index]->write_pos);
pos += fPortBuffer[port_index]->write_pos;
JackMidiBuffer* midi_buffer = reinterpret_cast<JackMidiBuffer*>(write_pos);
MidiBufferHToN(midi_buffer, midi_buffer);
}
return pos;
}
void NetMidiBuffer::RenderToJackPorts()
{
int pos = 0;
size_t copy_size;
for (int port_index = 0; port_index < fNPorts; port_index++) {
JackMidiBuffer* midi_buffer = reinterpret_cast<JackMidiBuffer*>(fBuffer + pos);
MidiBufferNToH(midi_buffer, midi_buffer);
copy_size = sizeof(JackMidiBuffer) + reinterpret_cast<JackMidiBuffer*>(fBuffer + pos)->event_count * sizeof(JackMidiEvent);
memcpy(fPortBuffer[port_index], fBuffer + pos, copy_size);
pos += copy_size;
memcpy(fPortBuffer[port_index] + (fPortBuffer[port_index]->buffer_size - fPortBuffer[port_index]->write_pos),
fBuffer + pos,
fPortBuffer[port_index]->write_pos);
pos += fPortBuffer[port_index]->write_pos;
}
}
void NetMidiBuffer::RenderFromNetwork(int sub_cycle, size_t copy_size)
{
memcpy(fBuffer + sub_cycle * fMaxPcktSize, fNetBuffer, copy_size);
}
int NetMidiBuffer::RenderToNetwork(int sub_cycle, size_t total_size)
{
int size = total_size - sub_cycle * fMaxPcktSize;
int copy_size = (size <= fMaxPcktSize) ? size : fMaxPcktSize;
memcpy(fNetBuffer, fBuffer + sub_cycle * fMaxPcktSize, copy_size);
return copy_size;
}
// net audio buffer *********************************************************************************
NetAudioBuffer::NetAudioBuffer(session_params_t* params, uint32_t nports, char* net_buffer)
{
fNPorts = nports;
fNetBuffer = net_buffer;
fNumPackets = 0;
fPortBuffer = new sample_t*[fNPorts];
fConnectedPorts = new bool[fNPorts];
for (int port_index = 0; port_index < fNPorts; port_index++) {
fPortBuffer[port_index] = NULL;
fConnectedPorts[port_index] = true;
}
fLastSubCycle = 0;
fPeriodSize = 0;
fSubPeriodSize = 0;
fSubPeriodBytesSize = 0;
fCycleDuration = 0.f;
fCycleBytesSize = 0;
}
NetAudioBuffer::~NetAudioBuffer()
{
delete [] fConnectedPorts;
delete [] fPortBuffer;
}
void NetAudioBuffer::SetBuffer(int index, sample_t* buffer)
{
fPortBuffer[index] = buffer;
}
sample_t* NetAudioBuffer::GetBuffer(int index)
{
return fPortBuffer[index];
}
int NetAudioBuffer::CheckPacket(int cycle, int sub_cycle)
{
int res;
if (sub_cycle != fLastSubCycle + 1) {
jack_error("Packet(s) missing from... %d %d", fLastSubCycle, sub_cycle);
res = DATA_PACKET_ERROR;
} else {
res = 0;
}
fLastSubCycle = sub_cycle;
return res;
}
void NetAudioBuffer::NextCycle()
{
// reset for next cycle
fLastSubCycle = -1;
}
void NetAudioBuffer::Cleanup()
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
memset(fPortBuffer[port_index], 0, fPeriodSize * sizeof(sample_t));
}
}
}
//network<->buffer
int NetAudioBuffer::ActivePortsToNetwork(char* net_buffer)
{
int active_ports = 0;
int* active_port_address = (int*)net_buffer;
for (int port_index = 0; port_index < fNPorts; port_index++) {
// Write the active port number
if (fPortBuffer[port_index]) {
*active_port_address = htonl(port_index);
active_port_address++;
active_ports++;
assert(active_ports < 256);
}
}
return active_ports;
}
void NetAudioBuffer::ActivePortsFromNetwork(char* net_buffer, uint32_t port_num)
{
int* active_port_address = (int*)net_buffer;
for (int port_index = 0; port_index < fNPorts; port_index++) {
fConnectedPorts[port_index] = false;
}
for (uint port_index = 0; port_index < port_num; port_index++) {
int active_port = ntohl(*active_port_address);
assert(active_port < fNPorts);
fConnectedPorts[active_port] = true;
active_port_address++;
}
}
int NetAudioBuffer::RenderFromJackPorts(int unused_frames)
{
// Count active ports
int active_ports = 0;
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
active_ports++;
}
}
return active_ports;
}
void NetAudioBuffer::RenderToJackPorts(int unused_frames)
{
// Nothing to do
NextCycle();
}
// Float converter
NetFloatAudioBuffer::NetFloatAudioBuffer(session_params_t* params, uint32_t nports, char* net_buffer)
: NetAudioBuffer(params, nports, net_buffer)
{
fPeriodSize = params->fPeriodSize;
fPacketSize = PACKET_AVAILABLE_SIZE(params);
UpdateParams(max(params->fReturnAudioChannels, params->fSendAudioChannels));
fCycleDuration = float(fSubPeriodSize) / float(params->fSampleRate);
fCycleBytesSize = params->fMtu * (fPeriodSize / fSubPeriodSize);
fLastSubCycle = -1;
}
NetFloatAudioBuffer::~NetFloatAudioBuffer()
{}
// needed size in bytes for an entire cycle
size_t NetFloatAudioBuffer::GetCycleSize()
{
return fCycleBytesSize;
}
// cycle duration in sec
float NetFloatAudioBuffer::GetCycleDuration()
{
return fCycleDuration;
}
void NetFloatAudioBuffer::UpdateParams(int active_ports)
{
if (active_ports == 0) {
fSubPeriodSize = fPeriodSize;
} else {
jack_nframes_t period = int(powf(2.f, int(log(float(fPacketSize) / (active_ports * sizeof(sample_t))) / log(2.))));
fSubPeriodSize = (period > fPeriodSize) ? fPeriodSize : period;
}
fSubPeriodBytesSize = fSubPeriodSize * sizeof(sample_t) + sizeof(int); // The port number in coded on 4 bytes
fNumPackets = fPeriodSize / fSubPeriodSize; // At least one packet
}
int NetFloatAudioBuffer::GetNumPackets(int active_ports)
{
UpdateParams(active_ports);
/*
jack_log("GetNumPackets packet = %d fPeriodSize = %d fSubPeriodSize = %d fSubPeriodBytesSize = %d",
fPeriodSize / fSubPeriodSize, fPeriodSize, fSubPeriodSize, fSubPeriodBytesSize);
*/
return fNumPackets;
}
//jack<->buffer
int NetFloatAudioBuffer::RenderFromNetwork(int cycle, int sub_cycle, uint32_t port_num)
{
// Cleanup all JACK ports at the beginning of the cycle
if (sub_cycle == 0) {
Cleanup();
}
if (port_num > 0) {
UpdateParams(port_num);
for (uint32_t port_index = 0; port_index < port_num; port_index++) {
// Only copy to active ports : read the active port number then audio data
int* active_port_address = (int*)(fNetBuffer + port_index * fSubPeriodBytesSize);
int active_port = ntohl(*active_port_address);
RenderFromNetwork((char*)(active_port_address + 1), active_port, sub_cycle);
}
}
return CheckPacket(cycle, sub_cycle);
}
int NetFloatAudioBuffer::RenderToNetwork(int sub_cycle, uint32_t port_num)
{
int active_ports = 0;
for (int port_index = 0; port_index < fNPorts; port_index++) {
// Only copy from active ports : write the active port number then audio data
if (fPortBuffer[port_index]) {
int* active_port_address = (int*)(fNetBuffer + active_ports * fSubPeriodBytesSize);
*active_port_address = htonl(port_index);
RenderToNetwork((char*)(active_port_address + 1), port_index, sub_cycle);
active_ports++;
}
}
return port_num * fSubPeriodBytesSize;
}
#ifdef __BIG_ENDIAN__
static inline jack_default_audio_sample_t SwapFloat(jack_default_audio_sample_t f)
{
union
{
jack_default_audio_sample_t f;
unsigned char b[4];
} dat1, dat2;
dat1.f = f;
dat2.b[0] = dat1.b[3];
dat2.b[1] = dat1.b[2];
dat2.b[2] = dat1.b[1];
dat2.b[3] = dat1.b[0];
return dat2.f;
}
void NetFloatAudioBuffer::RenderFromNetwork(char* net_buffer, int active_port, int sub_cycle)
{
if (fPortBuffer[active_port]) {
jack_default_audio_sample_t* src = (jack_default_audio_sample_t*)(net_buffer);
jack_default_audio_sample_t* dst = (jack_default_audio_sample_t*)(fPortBuffer[active_port] + sub_cycle * fSubPeriodSize);
for (unsigned int sample = 0; sample < (fSubPeriodBytesSize - sizeof(int)) / sizeof(jack_default_audio_sample_t); sample++) {
dst[sample] = SwapFloat(src[sample]);
}
}
}
void NetFloatAudioBuffer::RenderToNetwork(char* net_buffer, int active_port, int sub_cycle)
{
for (int port_index = 0; port_index < fNPorts; port_index++ ) {
jack_default_audio_sample_t* src = (jack_default_audio_sample_t*)(fPortBuffer[active_port] + sub_cycle * fSubPeriodSize);
jack_default_audio_sample_t* dst = (jack_default_audio_sample_t*)(net_buffer);
for (unsigned int sample = 0; sample < (fSubPeriodBytesSize - sizeof(int)) / sizeof(jack_default_audio_sample_t); sample++) {
dst[sample] = SwapFloat(src[sample]);
}
}
}
#else
void NetFloatAudioBuffer::RenderFromNetwork(char* net_buffer, int active_port, int sub_cycle)
{
if (fPortBuffer[active_port]) {
memcpy(fPortBuffer[active_port] + sub_cycle * fSubPeriodSize, net_buffer, fSubPeriodBytesSize - sizeof(int));
}
}
void NetFloatAudioBuffer::RenderToNetwork(char* net_buffer, int active_port, int sub_cycle)
{
memcpy(net_buffer, fPortBuffer[active_port] + sub_cycle * fSubPeriodSize, fSubPeriodBytesSize - sizeof(int));
}
#endif
// Celt audio buffer *********************************************************************************
#if HAVE_CELT
#define KPS 32
#define KPS_DIV 8
NetCeltAudioBuffer::NetCeltAudioBuffer(session_params_t* params, uint32_t nports, char* net_buffer, int kbps)
:NetAudioBuffer(params, nports, net_buffer)
{
fCeltMode = new CELTMode*[fNPorts];
fCeltEncoder = new CELTEncoder*[fNPorts];
fCeltDecoder = new CELTDecoder*[fNPorts];
memset(fCeltMode, 0, fNPorts * sizeof(CELTMode*));
memset(fCeltEncoder, 0, fNPorts * sizeof(CELTEncoder*));
memset(fCeltDecoder, 0, fNPorts * sizeof(CELTDecoder*));
int error = CELT_OK;
for (int i = 0; i < fNPorts; i++) {
fCeltMode[i] = celt_mode_create(params->fSampleRate, params->fPeriodSize, &error);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_mode_create err = %d", error);
goto error;
}
#if HAVE_CELT_API_0_11
fCeltEncoder[i] = celt_encoder_create_custom(fCeltMode[i], 1, &error);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_encoder_create_custom err = %d", error);
goto error;
}
celt_encoder_ctl(fCeltEncoder[i], CELT_SET_COMPLEXITY(1));
fCeltDecoder[i] = celt_decoder_create_custom(fCeltMode[i], 1, &error);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_decoder_create_custom err = %d", error);
goto error;
}
celt_decoder_ctl(fCeltDecoder[i], CELT_SET_COMPLEXITY(1));
#elif HAVE_CELT_API_0_7 || HAVE_CELT_API_0_8
fCeltEncoder[i] = celt_encoder_create(fCeltMode[i], 1, &error);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_mode_create err = %d", error);
goto error;
}
celt_encoder_ctl(fCeltEncoder[i], CELT_SET_COMPLEXITY(1));
fCeltDecoder[i] = celt_decoder_create(fCeltMode[i], 1, &error);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_decoder_create err = %d", error);
goto error;
}
celt_decoder_ctl(fCeltDecoder[i], CELT_SET_COMPLEXITY(1));
#else
fCeltEncoder[i] = celt_encoder_create(fCeltMode[i]);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_encoder_create err = %d", error);
goto error;
}
celt_encoder_ctl(fCeltEncoder[i], CELT_SET_COMPLEXITY(1));
fCeltDecoder[i] = celt_decoder_create(fCeltMode[i]);
if (error != CELT_OK) {
jack_log("NetCeltAudioBuffer celt_decoder_create err = %d", error);
goto error;
}
celt_decoder_ctl(fCeltDecoder[i], CELT_SET_COMPLEXITY(1));
#endif
}
{
fPeriodSize = params->fPeriodSize;
fCompressedSizeByte = (kbps * params->fPeriodSize * 1024) / (params->fSampleRate * 8);
jack_log("NetCeltAudioBuffer fCompressedSizeByte %d", fCompressedSizeByte);
fCompressedBuffer = new unsigned char* [fNPorts];
for (int port_index = 0; port_index < fNPorts; port_index++) {
fCompressedBuffer[port_index] = new unsigned char[fCompressedSizeByte];
memset(fCompressedBuffer[port_index], 0, fCompressedSizeByte * sizeof(char));
}
int res1 = (fNPorts * fCompressedSizeByte) % PACKET_AVAILABLE_SIZE(params);
int res2 = (fNPorts * fCompressedSizeByte) / PACKET_AVAILABLE_SIZE(params);
fNumPackets = (res1) ? (res2 + 1) : res2;
jack_log("NetCeltAudioBuffer res1 = %d res2 = %d", res1, res2);
fSubPeriodBytesSize = fCompressedSizeByte / fNumPackets;
fLastSubPeriodBytesSize = fSubPeriodBytesSize + fCompressedSizeByte % fNumPackets;
jack_log("NetCeltAudioBuffer fNumPackets = %d fSubPeriodBytesSize = %d, fLastSubPeriodBytesSize = %d", fNumPackets, fSubPeriodBytesSize, fLastSubPeriodBytesSize);
fCycleDuration = float(fSubPeriodBytesSize / sizeof(sample_t)) / float(params->fSampleRate);
fCycleBytesSize = params->fMtu * fNumPackets;
fLastSubCycle = -1;
return;
}
error:
FreeCelt();
throw std::bad_alloc();
}
NetCeltAudioBuffer::~NetCeltAudioBuffer()
{
FreeCelt();
for (int port_index = 0; port_index < fNPorts; port_index++) {
delete [] fCompressedBuffer[port_index];
}
delete [] fCompressedBuffer;
}
void NetCeltAudioBuffer::FreeCelt()
{
for (int i = 0; i < fNPorts; i++) {
if (fCeltEncoder[i]) {
celt_encoder_destroy(fCeltEncoder[i]);
}
if (fCeltDecoder[i]) {
celt_decoder_destroy(fCeltDecoder[i]);
}
if (fCeltMode[i]) {
celt_mode_destroy(fCeltMode[i]);
}
}
delete [] fCeltMode;
delete [] fCeltEncoder;
delete [] fCeltDecoder;
}
size_t NetCeltAudioBuffer::GetCycleSize()
{
return fCycleBytesSize;
}
float NetCeltAudioBuffer::GetCycleDuration()
{
return fCycleDuration;
}
int NetCeltAudioBuffer::GetNumPackets(int active_ports)
{
return fNumPackets;
}
int NetCeltAudioBuffer::RenderFromJackPorts(int nframes)
{
float buffer[BUFFER_SIZE_MAX];
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
memcpy(buffer, fPortBuffer[port_index], fPeriodSize * sizeof(sample_t));
} else {
memset(buffer, 0, fPeriodSize * sizeof(sample_t));
}
#if HAVE_CELT_API_0_8 || HAVE_CELT_API_0_11
//int res = celt_encode_float(fCeltEncoder[port_index], buffer, fPeriodSize, fCompressedBuffer[port_index], fCompressedSizeByte);
int res = celt_encode_float(fCeltEncoder[port_index], buffer, nframes, fCompressedBuffer[port_index], fCompressedSizeByte);
#else
int res = celt_encode_float(fCeltEncoder[port_index], buffer, NULL, fCompressedBuffer[port_index], fCompressedSizeByte);
#endif
if (res != fCompressedSizeByte) {
jack_error("celt_encode_float error fCompressedSizeByte = %d res = %d", fCompressedSizeByte, res);
}
}
// All ports active
return fNPorts;
}
void NetCeltAudioBuffer::RenderToJackPorts(int nframes)
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
#if HAVE_CELT_API_0_8 || HAVE_CELT_API_0_11
//int res = celt_decode_float(fCeltDecoder[port_index], fCompressedBuffer[port_index], fCompressedSizeByte, fPortBuffer[port_index], fPeriodSize);
int res = celt_decode_float(fCeltDecoder[port_index], fCompressedBuffer[port_index], fCompressedSizeByte, fPortBuffer[port_index], nframes);
#else
int res = celt_decode_float(fCeltDecoder[port_index], fCompressedBuffer[port_index], fCompressedSizeByte, fPortBuffer[port_index]);
#endif
if (res != CELT_OK) {
jack_error("celt_decode_float error fCompressedSizeByte = %d res = %d", fCompressedSizeByte, res);
}
}
}
NextCycle();
}
//network<->buffer
int NetCeltAudioBuffer::RenderFromNetwork(int cycle, int sub_cycle, uint32_t port_num)
{
// Cleanup all JACK ports at the beginning of the cycle
if (sub_cycle == 0) {
Cleanup();
}
if (port_num > 0) {
int sub_period_bytes_size;
// Last packet of the cycle
if (sub_cycle == fNumPackets - 1) {
sub_period_bytes_size = fLastSubPeriodBytesSize;
} else {
sub_period_bytes_size = fSubPeriodBytesSize;
}
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize, fNetBuffer + port_index * sub_period_bytes_size, sub_period_bytes_size);
}
}
return CheckPacket(cycle, sub_cycle);
}
int NetCeltAudioBuffer::RenderToNetwork(int sub_cycle, uint32_t port_num)
{
int sub_period_bytes_size;
// Last packet of the cycle
if (sub_cycle == fNumPackets - 1) {
sub_period_bytes_size = fLastSubPeriodBytesSize;
} else {
sub_period_bytes_size = fSubPeriodBytesSize;
}
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fNetBuffer + port_index * sub_period_bytes_size, fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize, sub_period_bytes_size);
}
return fNPorts * sub_period_bytes_size;
}
#endif
#if HAVE_OPUS
#define CDO (sizeof(short)) ///< compressed data offset (first 2 bytes are length)
NetOpusAudioBuffer::NetOpusAudioBuffer(session_params_t* params, uint32_t nports, char* net_buffer, int kbps)
:NetAudioBuffer(params, nports, net_buffer)
{
fOpusMode = new OpusCustomMode*[fNPorts];
fOpusEncoder = new OpusCustomEncoder*[fNPorts];
fOpusDecoder = new OpusCustomDecoder*[fNPorts];
fCompressedSizesByte = new unsigned short[fNPorts];
memset(fOpusMode, 0, fNPorts * sizeof(OpusCustomMode*));
memset(fOpusEncoder, 0, fNPorts * sizeof(OpusCustomEncoder*));
memset(fOpusDecoder, 0, fNPorts * sizeof(OpusCustomDecoder*));
memset(fCompressedSizesByte, 0, fNPorts * sizeof(short));
int error = OPUS_OK;
for (int i = 0; i < fNPorts; i++) {
/* Allocate en/decoders */
fOpusMode[i] = opus_custom_mode_create(params->fSampleRate, params->fPeriodSize, &error);
if (error != OPUS_OK) {
jack_log("NetOpusAudioBuffer opus_custom_mode_create err = %d", error);
goto error;
}
fOpusEncoder[i] = opus_custom_encoder_create(fOpusMode[i], 1, &error);
if (error != OPUS_OK) {
jack_log("NetOpusAudioBuffer opus_custom_encoder_create err = %d", error);
goto error;
}
fOpusDecoder[i] = opus_custom_decoder_create(fOpusMode[i], 1, &error);
if (error != OPUS_OK) {
jack_log("NetOpusAudioBuffer opus_custom_decoder_create err = %d", error);
goto error;
}
opus_custom_encoder_ctl(fOpusEncoder[i], OPUS_SET_BITRATE(kbps*1024)); // bits per second
opus_custom_encoder_ctl(fOpusEncoder[i], OPUS_SET_COMPLEXITY(10));
opus_custom_encoder_ctl(fOpusEncoder[i], OPUS_SET_SIGNAL(OPUS_SIGNAL_MUSIC));
opus_custom_encoder_ctl(fOpusEncoder[i], OPUS_SET_SIGNAL(OPUS_APPLICATION_RESTRICTED_LOWDELAY));
}
{
fCompressedMaxSizeByte = (kbps * params->fPeriodSize * 1024) / (params->fSampleRate * 8);
fPeriodSize = params->fPeriodSize;
jack_log("NetOpusAudioBuffer fCompressedMaxSizeByte %d", fCompressedMaxSizeByte);
fCompressedBuffer = new unsigned char* [fNPorts];
for (int port_index = 0; port_index < fNPorts; port_index++) {
fCompressedBuffer[port_index] = new unsigned char[fCompressedMaxSizeByte];
memset(fCompressedBuffer[port_index], 0, fCompressedMaxSizeByte * sizeof(char));
}
int res1 = (fNPorts * (fCompressedMaxSizeByte + CDO)) % PACKET_AVAILABLE_SIZE(params);
int res2 = (fNPorts * (fCompressedMaxSizeByte + CDO)) / PACKET_AVAILABLE_SIZE(params);
fNumPackets = (res1) ? (res2 + 1) : res2;
jack_log("NetOpusAudioBuffer res1 = %d res2 = %d", res1, res2);
fSubPeriodBytesSize = (fCompressedMaxSizeByte + CDO) / fNumPackets;
fLastSubPeriodBytesSize = fSubPeriodBytesSize + (fCompressedMaxSizeByte + CDO) % fNumPackets;
if (fNumPackets == 1) {
fSubPeriodBytesSize = fLastSubPeriodBytesSize;
}
jack_log("NetOpusAudioBuffer fNumPackets = %d fSubPeriodBytesSize = %d, fLastSubPeriodBytesSize = %d", fNumPackets, fSubPeriodBytesSize, fLastSubPeriodBytesSize);
fCycleDuration = float(fSubPeriodBytesSize / sizeof(sample_t)) / float(params->fSampleRate);
fCycleBytesSize = params->fMtu * fNumPackets;
fLastSubCycle = -1;
return;
}
error:
FreeOpus();
throw std::bad_alloc();
}
NetOpusAudioBuffer::~NetOpusAudioBuffer()
{
FreeOpus();
for (int port_index = 0; port_index < fNPorts; port_index++) {
delete [] fCompressedBuffer[port_index];
}
delete [] fCompressedBuffer;
delete [] fCompressedSizesByte;
}
void NetOpusAudioBuffer::FreeOpus()
{
for (int i = 0; i < fNPorts; i++) {
if (fOpusEncoder[i]) {
opus_custom_encoder_destroy(fOpusEncoder[i]);
fOpusEncoder[i] = 0;
}
if (fOpusDecoder[i]) {
opus_custom_decoder_destroy(fOpusDecoder[i]);
fOpusDecoder[i] = 0;
}
if (fOpusMode[i]) {
opus_custom_mode_destroy(fOpusMode[i]);
fOpusMode[i] = 0;
}
}
delete [] fOpusEncoder;
delete [] fOpusDecoder;
delete [] fOpusMode;
}
size_t NetOpusAudioBuffer::GetCycleSize()
{
return fCycleBytesSize;
}
float NetOpusAudioBuffer::GetCycleDuration()
{
return fCycleDuration;
}
int NetOpusAudioBuffer::GetNumPackets(int active_ports)
{
return fNumPackets;
}
int NetOpusAudioBuffer::RenderFromJackPorts(int nframes)
{
float buffer[BUFFER_SIZE_MAX];
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
memcpy(buffer, fPortBuffer[port_index], fPeriodSize * sizeof(sample_t));
} else {
memset(buffer, 0, fPeriodSize * sizeof(sample_t));
}
int res = opus_custom_encode_float(fOpusEncoder[port_index], buffer, ((nframes == -1) ? fPeriodSize : nframes), fCompressedBuffer[port_index], fCompressedMaxSizeByte);
if (res < 0 || res >= 65535) {
jack_error("opus_custom_encode_float error res = %d", res);
fCompressedSizesByte[port_index] = 0;
} else {
fCompressedSizesByte[port_index] = res;
}
}
// All ports active
return fNPorts;
}
void NetOpusAudioBuffer::RenderToJackPorts(int nframes)
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
int res = opus_custom_decode_float(fOpusDecoder[port_index], fCompressedBuffer[port_index], fCompressedSizesByte[port_index], fPortBuffer[port_index], ((nframes == -1) ? fPeriodSize : nframes));
if (res < 0 || res != ((nframes == -1) ? (int)fPeriodSize : nframes)) {
jack_error("opus_custom_decode_float error fCompressedSizeByte = %d res = %d", fCompressedSizesByte[port_index], res);
}
}
}
NextCycle();
}
//network<->buffer
int NetOpusAudioBuffer::RenderFromNetwork(int cycle, int sub_cycle, uint32_t port_num)
{
// Cleanup all JACK ports at the beginning of the cycle
if (sub_cycle == 0) {
Cleanup();
}
if (port_num > 0) {
if (sub_cycle == 0) {
for (int port_index = 0; port_index < fNPorts; port_index++) {
size_t len = *((size_t*)(fNetBuffer + port_index * fSubPeriodBytesSize));
fCompressedSizesByte[port_index] = ntohs(len);
memcpy(fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize, fNetBuffer + CDO + port_index * fSubPeriodBytesSize, fSubPeriodBytesSize - CDO);
}
} else if (sub_cycle == fNumPackets - 1) {
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize - CDO, fNetBuffer + port_index * fLastSubPeriodBytesSize, fLastSubPeriodBytesSize);
}
} else {
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize - CDO, fNetBuffer + port_index * fSubPeriodBytesSize, fSubPeriodBytesSize);
}
}
}
return CheckPacket(cycle, sub_cycle);
}
int NetOpusAudioBuffer::RenderToNetwork(int sub_cycle, uint32_t port_num)
{
if (sub_cycle == 0) {
for (int port_index = 0; port_index < fNPorts; port_index++) {
unsigned short len = htons(fCompressedSizesByte[port_index]);
memcpy(fNetBuffer + port_index * fSubPeriodBytesSize, &len, CDO);
memcpy(fNetBuffer + port_index * fSubPeriodBytesSize + CDO, fCompressedBuffer[port_index], fSubPeriodBytesSize - CDO);
}
return fNPorts * fSubPeriodBytesSize;
} else if (sub_cycle == fNumPackets - 1) {
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fNetBuffer + port_index * fLastSubPeriodBytesSize, fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize - CDO, fLastSubPeriodBytesSize);
}
return fNPorts * fLastSubPeriodBytesSize;
} else {
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fNetBuffer + port_index * fSubPeriodBytesSize, fCompressedBuffer[port_index] + sub_cycle * fSubPeriodBytesSize - CDO, fSubPeriodBytesSize);
}
return fNPorts * fSubPeriodBytesSize;
}
}
#endif
NetIntAudioBuffer::NetIntAudioBuffer(session_params_t* params, uint32_t nports, char* net_buffer)
: NetAudioBuffer(params, nports, net_buffer)
{
fPeriodSize = params->fPeriodSize;
fCompressedSizeByte = (params->fPeriodSize * sizeof(short));
jack_log("NetIntAudioBuffer fCompressedSizeByte %d", fCompressedSizeByte);
fIntBuffer = new short* [fNPorts];
for (int port_index = 0; port_index < fNPorts; port_index++) {
fIntBuffer[port_index] = new short[fPeriodSize];
memset(fIntBuffer[port_index], 0, fPeriodSize * sizeof(short));
}
int res1 = (fNPorts * fCompressedSizeByte) % PACKET_AVAILABLE_SIZE(params);
int res2 = (fNPorts * fCompressedSizeByte) / PACKET_AVAILABLE_SIZE(params);
jack_log("NetIntAudioBuffer res1 = %d res2 = %d", res1, res2);
fNumPackets = (res1) ? (res2 + 1) : res2;
fSubPeriodBytesSize = fCompressedSizeByte / fNumPackets;
fLastSubPeriodBytesSize = fSubPeriodBytesSize + fCompressedSizeByte % fNumPackets;
fSubPeriodSize = fSubPeriodBytesSize / sizeof(short);
jack_log("NetIntAudioBuffer fNumPackets = %d fSubPeriodBytesSize = %d, fLastSubPeriodBytesSize = %d", fNumPackets, fSubPeriodBytesSize, fLastSubPeriodBytesSize);
fCycleDuration = float(fSubPeriodBytesSize / sizeof(sample_t)) / float(params->fSampleRate);
fCycleBytesSize = params->fMtu * fNumPackets;
fLastSubCycle = -1;
}
NetIntAudioBuffer::~NetIntAudioBuffer()
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
delete [] fIntBuffer[port_index];
}
delete [] fIntBuffer;
}
size_t NetIntAudioBuffer::GetCycleSize()
{
return fCycleBytesSize;
}
float NetIntAudioBuffer::GetCycleDuration()
{
return fCycleDuration;
}
int NetIntAudioBuffer::GetNumPackets(int active_ports)
{
return fNumPackets;
}
int NetIntAudioBuffer::RenderFromJackPorts(int nframes)
{
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
for (int frame = 0; frame < nframes; frame++) {
fIntBuffer[port_index][frame] = short(fPortBuffer[port_index][frame] * 32767.f);
}
} else {
memset(fIntBuffer[port_index], 0, fPeriodSize * sizeof(short));
}
}
// All ports active
return fNPorts;
}
void NetIntAudioBuffer::RenderToJackPorts(int nframes)
{
float coef = 1.f / 32767.f;
for (int port_index = 0; port_index < fNPorts; port_index++) {
if (fPortBuffer[port_index]) {
for (int frame = 0; frame < nframes; frame++) {
fPortBuffer[port_index][frame] = float(fIntBuffer[port_index][frame] * coef);
}
}
}
NextCycle();
}
//network<->buffer
int NetIntAudioBuffer::RenderFromNetwork(int cycle, int sub_cycle, uint32_t port_num)
{
// Cleanup all JACK ports at the beginning of the cycle
if (sub_cycle == 0) {
Cleanup();
}
if (port_num > 0) {
int sub_period_bytes_size;
// Last packet
if (sub_cycle == fNumPackets - 1) {
sub_period_bytes_size = fLastSubPeriodBytesSize;
} else {
sub_period_bytes_size = fSubPeriodBytesSize;
}
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fIntBuffer[port_index] + sub_cycle * fSubPeriodSize, fNetBuffer + port_index * sub_period_bytes_size, sub_period_bytes_size);
}
}
return CheckPacket(cycle, sub_cycle);
}
int NetIntAudioBuffer::RenderToNetwork(int sub_cycle, uint32_t port_num)
{
int sub_period_bytes_size;
// Last packet
if (sub_cycle == fNumPackets - 1) {
sub_period_bytes_size = fLastSubPeriodBytesSize;
} else {
sub_period_bytes_size = fSubPeriodBytesSize;
}
for (int port_index = 0; port_index < fNPorts; port_index++) {
memcpy(fNetBuffer + port_index * sub_period_bytes_size, fIntBuffer[port_index] + sub_cycle * fSubPeriodSize, sub_period_bytes_size);
}
return fNPorts * sub_period_bytes_size;
}
// SessionParams ************************************************************************************
SERVER_EXPORT void SessionParamsHToN(session_params_t* src_params, session_params_t* dst_params)
{
memcpy(dst_params, src_params, sizeof(session_params_t));
dst_params->fProtocolVersion = htonl(src_params->fProtocolVersion);
dst_params->fPacketID = htonl(src_params->fPacketID);
dst_params->fMtu = htonl(src_params->fMtu);
dst_params->fID = htonl(src_params->fID);
dst_params->fTransportSync = htonl(src_params->fTransportSync);
dst_params->fSendAudioChannels = htonl(src_params->fSendAudioChannels);
dst_params->fReturnAudioChannels = htonl(src_params->fReturnAudioChannels);
dst_params->fSendMidiChannels = htonl(src_params->fSendMidiChannels);
dst_params->fReturnMidiChannels = htonl(src_params->fReturnMidiChannels);
dst_params->fSampleRate = htonl(src_params->fSampleRate);
dst_params->fPeriodSize = htonl(src_params->fPeriodSize);
dst_params->fSampleEncoder = htonl(src_params->fSampleEncoder);
dst_params->fKBps = htonl(src_params->fKBps);
dst_params->fSlaveSyncMode = htonl(src_params->fSlaveSyncMode);
dst_params->fNetworkLatency = htonl(src_params->fNetworkLatency);
}
SERVER_EXPORT void SessionParamsNToH(session_params_t* src_params, session_params_t* dst_params)
{
memcpy(dst_params, src_params, sizeof(session_params_t));
dst_params->fProtocolVersion = ntohl(src_params->fProtocolVersion);
dst_params->fPacketID = ntohl(src_params->fPacketID);
dst_params->fMtu = ntohl(src_params->fMtu);
dst_params->fID = ntohl(src_params->fID);
dst_params->fTransportSync = ntohl(src_params->fTransportSync);
dst_params->fSendAudioChannels = ntohl(src_params->fSendAudioChannels);
dst_params->fReturnAudioChannels = ntohl(src_params->fReturnAudioChannels);
dst_params->fSendMidiChannels = ntohl(src_params->fSendMidiChannels);
dst_params->fReturnMidiChannels = ntohl(src_params->fReturnMidiChannels);
dst_params->fSampleRate = ntohl(src_params->fSampleRate);
dst_params->fPeriodSize = ntohl(src_params->fPeriodSize);
dst_params->fSampleEncoder = ntohl(src_params->fSampleEncoder);
dst_params->fKBps = ntohl(src_params->fKBps);
dst_params->fSlaveSyncMode = ntohl(src_params->fSlaveSyncMode);
dst_params->fNetworkLatency = ntohl(src_params->fNetworkLatency);
}
SERVER_EXPORT void SessionParamsDisplay(session_params_t* params)
{
char encoder[16];
switch (params->fSampleEncoder)
{
case JackFloatEncoder:
strcpy(encoder, "float");
break;
case JackIntEncoder:
strcpy(encoder, "integer");
break;
case JackCeltEncoder:
strcpy(encoder, "CELT");
break;
case JackOpusEncoder:
strcpy(encoder, "OPUS");
break;
}
jack_info("**************** Network parameters ****************");
jack_info("Name : %s", params->fName);
jack_info("Protocol revision : %d", params->fProtocolVersion);
jack_info("MTU : %u", params->fMtu);
jack_info("Master name : %s", params->fMasterNetName);
jack_info("Slave name : %s", params->fSlaveNetName);
jack_info("ID : %u", params->fID);
jack_info("Transport Sync : %s", (params->fTransportSync) ? "yes" : "no");
jack_info("Send channels (audio - midi) : %d - %d", params->fSendAudioChannels, params->fSendMidiChannels);
jack_info("Return channels (audio - midi) : %d - %d", params->fReturnAudioChannels, params->fReturnMidiChannels);
jack_info("Sample rate : %u frames per second", params->fSampleRate);
jack_info("Period size : %u frames per period", params->fPeriodSize);
jack_info("Network latency : %u cycles", params->fNetworkLatency);
switch (params->fSampleEncoder) {
case (JackFloatEncoder):
jack_info("SampleEncoder : %s", "Float");
break;
case (JackIntEncoder):
jack_info("SampleEncoder : %s", "16 bits integer");
break;
case (JackCeltEncoder):
jack_info("SampleEncoder : %s", "CELT");
jack_info("kBits : %d", params->fKBps);
break;
case (JackOpusEncoder):
jack_info("SampleEncoder : %s", "OPUS");
jack_info("kBits : %d", params->fKBps);
break;
};
jack_info("Slave mode : %s", (params->fSlaveSyncMode) ? "sync" : "async");
jack_info("****************************************************");
}
SERVER_EXPORT sync_packet_type_t GetPacketType(session_params_t* params)
{
switch (params->fPacketID)
{
case 0:
return SLAVE_AVAILABLE;
case 1:
return SLAVE_SETUP;
case 2:
return START_MASTER;
case 3:
return START_SLAVE;
case 4:
return KILL_MASTER;
}
return INVALID;
}
SERVER_EXPORT int SetPacketType(session_params_t* params, sync_packet_type_t packet_type)
{
switch (packet_type)
{
case INVALID:
return -1;
case SLAVE_AVAILABLE:
params->fPacketID = 0;
break;
case SLAVE_SETUP:
params->fPacketID = 1;
break;
case START_MASTER:
params->fPacketID = 2;
break;
case START_SLAVE:
params->fPacketID = 3;
break;
case KILL_MASTER:
params->fPacketID = 4;
}
return 0;
}
// Packet header **********************************************************************************
SERVER_EXPORT void PacketHeaderHToN(packet_header_t* src_header, packet_header_t* dst_header)
{
memcpy(dst_header, src_header, sizeof(packet_header_t));
dst_header->fDataType = htonl(src_header->fDataType);
dst_header->fDataStream = htonl(src_header->fDataStream);
dst_header->fID = htonl(src_header->fID);
dst_header->fNumPacket = htonl(src_header->fNumPacket);
dst_header->fPacketSize = htonl(src_header->fPacketSize);
dst_header->fActivePorts = htonl(src_header->fActivePorts);
dst_header->fCycle = htonl(src_header->fCycle);
dst_header->fSubCycle = htonl(src_header->fSubCycle);
dst_header->fFrames = htonl(src_header->fFrames);
dst_header->fIsLastPckt = htonl(src_header->fIsLastPckt);
}
SERVER_EXPORT void PacketHeaderNToH(packet_header_t* src_header, packet_header_t* dst_header)
{
memcpy(dst_header, src_header, sizeof(packet_header_t));
dst_header->fDataType = ntohl(src_header->fDataType);
dst_header->fDataStream = ntohl(src_header->fDataStream);
dst_header->fID = ntohl(src_header->fID);
dst_header->fNumPacket = ntohl(src_header->fNumPacket);
dst_header->fPacketSize = ntohl(src_header->fPacketSize);
dst_header->fActivePorts = ntohl(src_header->fActivePorts);
dst_header->fCycle = ntohl(src_header->fCycle);
dst_header->fSubCycle = ntohl(src_header->fSubCycle);
dst_header->fFrames = ntohl(src_header->fFrames);
dst_header->fIsLastPckt = ntohl(src_header->fIsLastPckt);
}
SERVER_EXPORT void PacketHeaderDisplay(packet_header_t* header)
{
jack_info("********************Header********************");
jack_info("Data type : %c", header->fDataType);
jack_info("Data stream : %c", header->fDataStream);
jack_info("ID : %u", header->fID);
jack_info("Cycle : %u", header->fCycle);
jack_info("SubCycle : %u", header->fSubCycle);
jack_info("Active ports : %u", header->fActivePorts);
jack_info("DATA packets : %u", header->fNumPacket);
jack_info("DATA size : %u", header->fPacketSize);
jack_info("DATA frames : %d", header->fFrames);
jack_info("Last packet : '%s'", (header->fIsLastPckt) ? "yes" : "no");
jack_info("**********************************************");
}
SERVER_EXPORT void NetTransportDataDisplay(net_transport_data_t* data)
{
jack_info("********************Network Transport********************");
jack_info("Transport new state : %u", data->fNewState);
jack_info("Transport timebase master : %u", data->fTimebaseMaster);
jack_info("Transport cycle state : %u", data->fState);
jack_info("**********************************************");
}
SERVER_EXPORT void MidiBufferHToN(JackMidiBuffer* src_buffer, JackMidiBuffer* dst_buffer)
{
dst_buffer->magic = htonl(src_buffer->magic);
dst_buffer->buffer_size = htonl(src_buffer->buffer_size);
dst_buffer->nframes = htonl(src_buffer->nframes);
dst_buffer->write_pos = htonl(src_buffer->write_pos);
dst_buffer->event_count = htonl(src_buffer->event_count);
dst_buffer->lost_events = htonl(src_buffer->lost_events);
}
SERVER_EXPORT void MidiBufferNToH(JackMidiBuffer* src_buffer, JackMidiBuffer* dst_buffer)
{
dst_buffer->magic = ntohl(src_buffer->magic);
dst_buffer->buffer_size = ntohl(src_buffer->buffer_size);
dst_buffer->nframes = ntohl(src_buffer->nframes);
dst_buffer->write_pos = ntohl(src_buffer->write_pos);
dst_buffer->event_count = ntohl(src_buffer->event_count);
dst_buffer->lost_events = ntohl(src_buffer->lost_events);
}
SERVER_EXPORT void TransportDataHToN(net_transport_data_t* src_params, net_transport_data_t* dst_params)
{
dst_params->fNewState = htonl(src_params->fNewState);
dst_params->fTimebaseMaster = htonl(src_params->fTimebaseMaster);
dst_params->fState = htonl(src_params->fState);
dst_params->fPosition.unique_1 = htonll(src_params->fPosition.unique_1);
dst_params->fPosition.usecs = htonl(src_params->fPosition.usecs);
dst_params->fPosition.frame_rate = htonl(src_params->fPosition.frame_rate);
dst_params->fPosition.frame = htonl(src_params->fPosition.frame);
dst_params->fPosition.valid = (jack_position_bits_t)htonl((uint32_t)src_params->fPosition.valid);
dst_params->fPosition.bar = htonl(src_params->fPosition.bar);
dst_params->fPosition.beat = htonl(src_params->fPosition.beat);
dst_params->fPosition.tick = htonl(src_params->fPosition.tick);
dst_params->fPosition.bar_start_tick = htonll((uint64_t)src_params->fPosition.bar_start_tick);
dst_params->fPosition.beats_per_bar = htonl((uint32_t)src_params->fPosition.beats_per_bar);
dst_params->fPosition.beat_type = htonl((uint32_t)src_params->fPosition.beat_type);
dst_params->fPosition.ticks_per_beat = htonll((uint64_t)src_params->fPosition.ticks_per_beat);
dst_params->fPosition.beats_per_minute = htonll((uint64_t)src_params->fPosition.beats_per_minute);
dst_params->fPosition.frame_time = htonll((uint64_t)src_params->fPosition.frame_time);
dst_params->fPosition.next_time = htonll((uint64_t)src_params->fPosition.next_time);
dst_params->fPosition.bbt_offset = htonl(src_params->fPosition.bbt_offset);
dst_params->fPosition.audio_frames_per_video_frame = htonl((uint32_t)src_params->fPosition.audio_frames_per_video_frame);
dst_params->fPosition.video_offset = htonl(src_params->fPosition.video_offset);
dst_params->fPosition.unique_2 = htonll(src_params->fPosition.unique_2);
}
SERVER_EXPORT void TransportDataNToH(net_transport_data_t* src_params, net_transport_data_t* dst_params)
{
dst_params->fNewState = ntohl(src_params->fNewState);
dst_params->fTimebaseMaster = ntohl(src_params->fTimebaseMaster);
dst_params->fState = ntohl(src_params->fState);
dst_params->fPosition.unique_1 = ntohll(src_params->fPosition.unique_1);
dst_params->fPosition.usecs = ntohl(src_params->fPosition.usecs);
dst_params->fPosition.frame_rate = ntohl(src_params->fPosition.frame_rate);
dst_params->fPosition.frame = ntohl(src_params->fPosition.frame);
dst_params->fPosition.valid = (jack_position_bits_t)ntohl((uint32_t)src_params->fPosition.valid);
dst_params->fPosition.bar = ntohl(src_params->fPosition.bar);
dst_params->fPosition.beat = ntohl(src_params->fPosition.beat);
dst_params->fPosition.tick = ntohl(src_params->fPosition.tick);
dst_params->fPosition.bar_start_tick = ntohll((uint64_t)src_params->fPosition.bar_start_tick);
dst_params->fPosition.beats_per_bar = ntohl((uint32_t)src_params->fPosition.beats_per_bar);
dst_params->fPosition.beat_type = ntohl((uint32_t)src_params->fPosition.beat_type);
dst_params->fPosition.ticks_per_beat = ntohll((uint64_t)src_params->fPosition.ticks_per_beat);
dst_params->fPosition.beats_per_minute = ntohll((uint64_t)src_params->fPosition.beats_per_minute);
dst_params->fPosition.frame_time = ntohll((uint64_t)src_params->fPosition.frame_time);
dst_params->fPosition.next_time = ntohll((uint64_t)src_params->fPosition.next_time);
dst_params->fPosition.bbt_offset = ntohl(src_params->fPosition.bbt_offset);
dst_params->fPosition.audio_frames_per_video_frame = ntohl((uint32_t)src_params->fPosition.audio_frames_per_video_frame);
dst_params->fPosition.video_offset = ntohl(src_params->fPosition.video_offset);
dst_params->fPosition.unique_2 = ntohll(src_params->fPosition.unique_2);
}
// Utility *******************************************************************************************************
SERVER_EXPORT int SocketAPIInit()
{
#ifdef WIN32
WORD wVersionRequested = MAKEWORD(2, 2);
WSADATA wsaData;
if (WSAStartup(wVersionRequested, &wsaData) != 0) {
jack_error("WSAStartup error : %s", strerror(NET_ERROR_CODE));
return -1;
}
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
jack_error("Could not find a usable version of Winsock.dll\n");
WSACleanup();
return -1;
}
#endif
return 0;
}
SERVER_EXPORT int SocketAPIEnd()
{
#ifdef WIN32
return WSACleanup();
#endif
return 0;
}
SERVER_EXPORT const char* GetTransportState(int transport_state)
{
switch (transport_state)
{
case JackTransportRolling:
return "rolling";
case JackTransportStarting:
return "starting";
case JackTransportStopped:
return "stopped";
case JackTransportNetStarting:
return "netstarting";
}
return NULL;
}
}