jack-headers/bitset.h

112 lines
3.1 KiB
C

/*
* bitset.h -- some simple bit vector set operations.
*
* This is useful for sets of small non-negative integers. There are
* some obvious set operations that are not implemented because I
* don't need them right now.
*
* These functions represent sets as arrays of unsigned 32-bit
* integers allocated on the heap. The first entry contains the set
* cardinality (number of elements allowed), followed by one or more
* words containing bit vectors.
*
*/
/*
* Copyright (C) 2005 Jack O'Quin
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __bitset_h__
#define __bitset_h__
#include <inttypes.h> /* POSIX standard fixed-size types */
#include <assert.h> /* `#define NDEBUG' to disable */
/* On some 64-bit machines, this implementation may be slightly
* inefficient, depending on how compilers allocate space for
* uint32_t. For the set sizes I currently need, this is acceptable.
* It should not be hard to pack the bits better, if that becomes
* worthwhile.
*/
typedef uint32_t _bitset_word_t;
typedef _bitset_word_t *bitset_t;
#define WORD_SIZE(cardinality) (1+((cardinality)+31)/32)
#define BYTE_SIZE(cardinality) (WORD_SIZE(cardinality)*sizeof(_bitset_word_t))
#define WORD_INDEX(element) (1+(element)/32)
#define BIT_INDEX(element) ((element)&037)
static inline void
bitset_add(bitset_t set, unsigned int element)
{
assert(element < set[0]);
set[WORD_INDEX(element)] |= (1 << BIT_INDEX(element));
}
static inline void
bitset_copy(bitset_t to_set, bitset_t from_set)
{
assert(to_set[0] == from_set[0]);
memcpy(to_set, from_set, BYTE_SIZE(to_set[0]));
}
static inline void
bitset_create(bitset_t *set, unsigned int cardinality)
{
*set = (bitset_t) calloc(WORD_SIZE(cardinality),
sizeof(_bitset_word_t));
assert(*set);
*set[0] = cardinality;
}
static inline void
bitset_destroy(bitset_t *set)
{
if (*set) {
free(*set);
*set = (bitset_t) 0;
}
}
static inline int
bitset_empty(bitset_t set)
{
int i;
_bitset_word_t result = 0;
int nwords = WORD_SIZE(set[0]);
for (i = 1; i < nwords; i++) {
result |= set[i];
}
return (result == 0);
}
static inline int
bitset_contains(bitset_t set, unsigned int element)
{
assert(element < set[0]);
return (0 != (set[WORD_INDEX(element)] & (1<<BIT_INDEX(element))));
}
static inline void
bitset_remove(bitset_t set, unsigned int element)
{
assert(element < set[0]);
set[WORD_INDEX(element)] &= ~(1<<BIT_INDEX(element));
}
#endif /* __bitset_h__ */