1
Fork 0
cardinal/include/simd/Vector.hpp

375 lines
11 KiB
C++

/*
* DISTRHO Cardinal Plugin
* Copyright (C) 2021-2022 Filipe Coelho <falktx@falktx.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* For a full copy of the GNU General Public License see the LICENSE file.
*/
/**
* This file is an edited version of VCVRack's simd/Vector.hpp
* Copyright (C) 2016-2021 VCV.
*
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*/
#pragma once
#include <cstring>
#include <pmmintrin.h>
namespace rack {
/** Abstraction of aligned types for SIMD computation
*/
namespace simd {
/** Generic class for vector types.
This class is designed to be used just like you use scalars, with extra features for handling bitwise logic, conditions, loading, and storing.
Example:
float a[4], b[4];
float_4 a = float_4::load(in);
float_4 b = 2.f * a / (1 - a);
b *= sin(2 * M_PI * a);
b.store(out);
*/
template <typename TYPE, int SIZE>
struct Vector;
/** Wrapper for `__m128` representing an aligned vector of 4 single-precision float values.
*/
template <>
struct Vector<float, 4> {
using type = float;
constexpr static int size = 4;
/** NOTE alignas is required in order to allow SSE usage. */
union alignas(32) {
__m128 v;
/** Accessing this array of scalars is slow and defeats the purpose of vectorizing.
*/
float s[4];
};
/** Constructs an uninitialized vector. */
Vector() = default;
/** Constructs a vector from a native `__m128` type. */
Vector(__m128 v) : v(v) {}
/** Constructs a vector with all elements set to `x`. */
Vector(float x) {
v = _mm_set1_ps(x);
}
/** Constructs a vector from four scalars. */
Vector(float x1, float x2, float x3, float x4) {
v = _mm_setr_ps(x1, x2, x3, x4);
}
/** Returns a vector with all 0 bits. */
static Vector zero() {
return Vector(_mm_setzero_ps());
}
/** Returns a vector with all 1 bits. */
static Vector mask() {
return Vector(_mm_castsi128_ps(_mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128())));
}
/** Reads an array of 4 values.
On little-endian machines (e.g. x86_64), the order is reversed, so `x[0]` corresponds to `vector.s[3]`.
*/
static Vector load(const float* x) {
/*
My benchmarks show that _mm_loadu_ps() performs equally as fast as _mm_load_ps() when data is actually aligned.
This post seems to agree. https://stackoverflow.com/a/20265193/272642
I therefore use _mm_loadu_ps() for generality, so you can load unaligned arrays using the same function (although load aligned arrays if you can for best performance).
*/
return Vector(_mm_loadu_ps(x));
}
/** Writes an array of 4 values.
On little-endian machines (e.g. x86_64), the order is reversed, so `x[0]` corresponds to `vector.s[3]`.
*/
void store(float* x) {
_mm_storeu_ps(x, v);
}
/** Accessing vector elements individually is slow and defeats the purpose of vectorizing.
However, this operator is convenient when writing simple serial code in a non-bottlenecked section.
*/
float& operator[](int i) {
return s[i];
}
const float& operator[](int i) const {
return s[i];
}
// Conversions
Vector(Vector<int32_t, 4> a);
// Casts
static Vector cast(Vector<int32_t, 4> a);
};
template <>
struct Vector<int32_t, 4> {
using type = int32_t;
constexpr static int size = 4;
/** NOTE alignas is required in order to allow SSE usage. */
union alignas(32) {
__m128i v;
int32_t s[4];
};
Vector() = default;
Vector(__m128i v) : v(v) {}
Vector(int32_t x) {
v = _mm_set1_epi32(x);
}
Vector(int32_t x1, int32_t x2, int32_t x3, int32_t x4) {
v = _mm_setr_epi32(x1, x2, x3, x4);
}
static Vector zero() {
return Vector(_mm_setzero_si128());
}
static Vector mask() {
return Vector(_mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
}
static Vector load(const int32_t* x) {
// HACK
// Use _mm_loadu_si128() because GCC doesn't support _mm_loadu_si32()
return Vector(_mm_loadu_si128((const __m128i*) x));
}
void store(int32_t* x) {
// HACK
// Use _mm_storeu_si128() because GCC doesn't support _mm_storeu_si32()
_mm_storeu_si128((__m128i*) x, v);
}
int32_t& operator[](int i) {
return s[i];
}
const int32_t& operator[](int i) const {
return s[i];
}
Vector(Vector<float, 4> a);
static Vector cast(Vector<float, 4> a);
};
// Conversions and casts
inline Vector<float, 4>::Vector(Vector<int32_t, 4> a) {
v = _mm_cvtepi32_ps(a.v);
}
inline Vector<int32_t, 4>::Vector(Vector<float, 4> a) {
v = _mm_cvttps_epi32(a.v);
}
inline Vector<float, 4> Vector<float, 4>::cast(Vector<int32_t, 4> a) {
return Vector(_mm_castsi128_ps(a.v));
}
inline Vector<int32_t, 4> Vector<int32_t, 4>::cast(Vector<float, 4> a) {
return Vector(_mm_castps_si128(a.v));
}
// Operator overloads
/** `a @ b` */
#define DECLARE_VECTOR_OPERATOR_INFIX(t, s, operator, func) \
inline Vector<t, s> operator(const Vector<t, s>& a, const Vector<t, s>& b) { \
return Vector<t, s>(func(a.v, b.v)); \
}
/** `a @= b` */
#define DECLARE_VECTOR_OPERATOR_INCREMENT(t, s, operator, opfunc) \
inline Vector<t, s>& operator(Vector<t, s>& a, const Vector<t, s>& b) { \
return a = opfunc(a, b); \
}
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator+, _mm_add_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator+, _mm_add_epi32)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator-, _mm_sub_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator-, _mm_sub_epi32)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator*, _mm_mul_ps)
// DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator*, NOT AVAILABLE IN SSE3)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator/, _mm_div_ps)
// DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator/, NOT AVAILABLE IN SSE3)
/* Use these to apply logic, bit masks, and conditions to elements.
Boolean operators on vectors give 0x00000000 for false and 0xffffffff for true, for each vector element.
Examples:
Subtract 1 from value if greater than or equal to 1.
x -= (x >= 1.f) & 1.f;
*/
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator^, _mm_xor_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator^, _mm_xor_si128)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator&, _mm_and_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator&, _mm_and_si128)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator|, _mm_or_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator|, _mm_or_si128)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator+=, operator+)
DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator+=, operator+)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator-=, operator-)
DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator-=, operator-)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator*=, operator*)
// DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator*=, NOT AVAILABLE IN SSE3)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator/=, operator/)
// DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator/=, NOT AVAILABLE IN SSE3)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator^=, operator^)
DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator^=, operator^)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator&=, operator&)
DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator&=, operator&)
DECLARE_VECTOR_OPERATOR_INCREMENT(float, 4, operator|=, operator|)
DECLARE_VECTOR_OPERATOR_INCREMENT(int32_t, 4, operator|=, operator|)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator==, _mm_cmpeq_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator==, _mm_cmpeq_epi32)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator>=, _mm_cmpge_ps)
inline Vector<int32_t, 4> operator>=(const Vector<int32_t, 4>& a, const Vector<int32_t, 4>& b) {
return Vector<int32_t, 4>(_mm_cmpgt_epi32(a.v, b.v)) ^ Vector<int32_t, 4>::mask();
}
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator>, _mm_cmpgt_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator>, _mm_cmpgt_epi32)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator<=, _mm_cmple_ps)
inline Vector<int32_t, 4> operator<=(const Vector<int32_t, 4>& a, const Vector<int32_t, 4>& b) {
return Vector<int32_t, 4>(_mm_cmplt_epi32(a.v, b.v)) ^ Vector<int32_t, 4>::mask();
}
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator<, _mm_cmplt_ps)
DECLARE_VECTOR_OPERATOR_INFIX(int32_t, 4, operator<, _mm_cmplt_epi32)
DECLARE_VECTOR_OPERATOR_INFIX(float, 4, operator!=, _mm_cmpneq_ps)
inline Vector<int32_t, 4> operator!=(const Vector<int32_t, 4>& a, const Vector<int32_t, 4>& b) {
return Vector<int32_t, 4>(_mm_cmpeq_epi32(a.v, b.v)) ^ Vector<int32_t, 4>::mask();
}
/** `+a` */
inline Vector<float, 4> operator+(const Vector<float, 4>& a) {
return a;
}
inline Vector<int32_t, 4> operator+(const Vector<int32_t, 4>& a) {
return a;
}
/** `-a` */
inline Vector<float, 4> operator-(const Vector<float, 4>& a) {
return 0.f - a;
}
inline Vector<int32_t, 4> operator-(const Vector<int32_t, 4>& a) {
return 0 - a;
}
/** `++a` */
inline Vector<float, 4>& operator++(Vector<float, 4>& a) {
return a += 1.f;
}
inline Vector<int32_t, 4>& operator++(Vector<int32_t, 4>& a) {
return a += 1;
}
/** `--a` */
inline Vector<float, 4>& operator--(Vector<float, 4>& a) {
return a -= 1.f;
}
inline Vector<int32_t, 4>& operator--(Vector<int32_t, 4>& a) {
return a -= 1;
}
/** `a++` */
inline Vector<float, 4> operator++(Vector<float, 4>& a, int) {
Vector<float, 4> b = a;
++a;
return b;
}
inline Vector<int32_t, 4> operator++(Vector<int32_t, 4>& a, int) {
Vector<int32_t, 4> b = a;
++a;
return b;
}
/** `a--` */
inline Vector<float, 4> operator--(Vector<float, 4>& a, int) {
Vector<float, 4> b = a;
--a;
return b;
}
inline Vector<int32_t, 4> operator--(Vector<int32_t, 4>& a, int) {
Vector<int32_t, 4> b = a;
--a;
return b;
}
/** `~a` */
inline Vector<float, 4> operator~(const Vector<float, 4>& a) {
return a ^ Vector<float, 4>::mask();
}
inline Vector<int32_t, 4> operator~(const Vector<int32_t, 4>& a) {
return a ^ Vector<int32_t, 4>::mask();
}
/** `a << b` */
inline Vector<int32_t, 4> operator<<(const Vector<int32_t, 4>& a, const int& b) {
return Vector<int32_t, 4>(_mm_slli_epi32(a.v, b));
}
/** `a >> b` */
inline Vector<int32_t, 4> operator>>(const Vector<int32_t, 4>& a, const int& b) {
return Vector<int32_t, 4>(_mm_srli_epi32(a.v, b));
}
// Typedefs
using float_4 = Vector<float, 4>;
using int32_4 = Vector<int32_t, 4>;
} // namespace simd
} // namespace rack