1
Fork 0
cardinal/include/dsp/fir.hpp

165 lines
5.0 KiB
C++

/*
* DISTRHO Cardinal Plugin
* Copyright (C) 2021-2022 Filipe Coelho <falktx@falktx.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* For a full copy of the GNU General Public License see the LICENSE file.
*/
/**
* This file is an edited version of VCVRack's dsp/fir.hpp
* Copyright (C) 2016-2021 VCV.
*
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*/
#pragma once
#include <pffft.h>
#include <dsp/common.hpp>
namespace rack {
namespace dsp {
/** Performs a direct sum convolution */
inline float convolveNaive(const float* in, const float* kernel, int len) {
float y = 0.f;
for (int i = 0; i < len; i++) {
y += in[len - 1 - i] * kernel[i];
}
return y;
}
/** Computes the impulse response of a boxcar lowpass filter */
inline void boxcarLowpassIR(float* out, int len, float cutoff = 0.5f) {
for (int i = 0; i < len; i++) {
float t = i - (len - 1) / 2.f;
out[i] = 2 * cutoff * sinc(2 * cutoff * t);
}
}
struct RealTimeConvolver {
// `kernelBlocks` number of contiguous FFT blocks of size `blockSize`
// indexed by [i * blockSize*2 + j]
float* kernelFfts = NULL;
float* inputFfts = NULL;
float* outputTail = NULL;
float* tmpBlock = NULL;
size_t blockSize;
size_t kernelBlocks = 0;
size_t inputPos = 0;
PFFFT_Setup* pffft;
/** `blockSize` is the size of each FFT block. It should be >=32 and a power of 2. */
RealTimeConvolver(size_t blockSize) {
this->blockSize = blockSize;
pffft = pffft_new_setup(blockSize * 2, PFFFT_REAL);
outputTail = (float*) pffft_aligned_malloc(sizeof(float) * blockSize);
std::memset(outputTail, 0, blockSize * sizeof(float));
tmpBlock = (float*) pffft_aligned_malloc(sizeof(float) * blockSize * 2);
std::memset(tmpBlock, 0, blockSize * 2 * sizeof(float));
}
~RealTimeConvolver() {
setKernel(NULL, 0);
pffft_aligned_free(outputTail);
pffft_aligned_free(tmpBlock);
pffft_destroy_setup(pffft);
}
void setKernel(const float* kernel, size_t length) {
// Clear existing kernel
if (kernelFfts) {
pffft_aligned_free(kernelFfts);
kernelFfts = NULL;
}
if (inputFfts) {
pffft_aligned_free(inputFfts);
inputFfts = NULL;
}
kernelBlocks = 0;
inputPos = 0;
if (kernel && length > 0) {
// Round up to the nearest factor of `blockSize`
kernelBlocks = (length - 1) / blockSize + 1;
// Allocate blocks
kernelFfts = (float*) pffft_aligned_malloc(sizeof(float) * blockSize * 2 * kernelBlocks);
inputFfts = (float*) pffft_aligned_malloc(sizeof(float) * blockSize * 2 * kernelBlocks);
std::memset(inputFfts, 0, sizeof(float) * blockSize * 2 * kernelBlocks);
for (size_t i = 0; i < kernelBlocks; i++) {
// Pad each block with zeros
std::memset(tmpBlock, 0, sizeof(float) * blockSize * 2);
size_t len = std::min((int) blockSize, (int)(length - i * blockSize));
std::memcpy(tmpBlock, &kernel[i * blockSize], sizeof(float)*len);
// Compute fft
pffft_transform(pffft, tmpBlock, &kernelFfts[blockSize * 2 * i], NULL, PFFFT_FORWARD);
}
}
}
/** Applies reverb to input
input and output must be of size `blockSize`
*/
void processBlock(const float* input, float* output) {
if (kernelBlocks == 0) {
std::memset(output, 0, sizeof(float) * blockSize);
return;
}
// Step input position
inputPos = (inputPos + 1) % kernelBlocks;
// Pad block with zeros
std::memset(tmpBlock, 0, sizeof(float) * blockSize * 2);
std::memcpy(tmpBlock, input, sizeof(float) * blockSize);
// Compute input fft
pffft_transform(pffft, tmpBlock, &inputFfts[blockSize * 2 * inputPos], NULL, PFFFT_FORWARD);
// Create output fft
std::memset(tmpBlock, 0, sizeof(float) * blockSize * 2);
// convolve input fft by kernel fft
// Note: This is the CPU bottleneck loop
for (size_t i = 0; i < kernelBlocks; i++) {
size_t pos = (inputPos - i + kernelBlocks) % kernelBlocks;
pffft_zconvolve_accumulate(pffft, &kernelFfts[blockSize * 2 * i], &inputFfts[blockSize * 2 * pos], tmpBlock, 1.f);
}
// Compute output
pffft_transform(pffft, tmpBlock, tmpBlock, NULL, PFFFT_BACKWARD);
// Add block tail from last output block
for (size_t i = 0; i < blockSize; i++) {
tmpBlock[i] += outputTail[i];
}
// Copy output block to output
float scale = 1.f / (blockSize * 2);
for (size_t i = 0; i < blockSize; i++) {
// Scale based on FFT
output[i] = tmpBlock[i] * scale;
}
// Set tail
for (size_t i = 0; i < blockSize; i++) {
outputTail[i] = tmpBlock[i + blockSize];
}
}
};
} // namespace dsp
} // namespace rack