ardour/gtk2_ardour/fft_graph.cc

484 lines
11 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <iostream>
#include <glibmm.h>
#include <glibmm/refptr.h>
#include <gdkmm/gc.h>
#include <gtkmm/widget.h>
#include <gtkmm/style.h>
#include <gtkmm/treemodel.h>
#include <gtkmm/treepath.h>
#include <pbd/stl_delete.h>
#include <math.h>
#include "fft_graph.h"
#include "analysis_window.h"
using namespace std;
using namespace Gtk;
using namespace Gdk;
FFTGraph::FFTGraph(int windowSize)
{
_logScale = 0;
_in = 0;
_out = 0;
_hanning = 0;
_logScale = 0;
_a_window = 0;
_show_minmax = false;
_show_normalized = false;
setWindowSize(windowSize);
}
void
FFTGraph::setWindowSize(int windowSize)
{
if (_a_window) {
Glib::Mutex::Lock lm (_a_window->track_list_lock);
setWindowSize_internal(windowSize);
} else {
setWindowSize_internal(windowSize);
}
}
void
FFTGraph::setWindowSize_internal(int windowSize)
{
// remove old tracklist & graphs
if (_a_window) {
_a_window->clear_tracklist();
}
_windowSize = windowSize;
_dataSize = windowSize / 2;
if (_in != 0) {
fftwf_destroy_plan(_plan);
free(_in);
_in = 0;
}
if (_out != 0) {
free(_out);
_out = 0;
}
if (_hanning != 0) {
free(_hanning);
_hanning = 0;
}
if (_logScale != 0) {
free(_logScale);
_logScale = 0;
}
// When destroying, window size is set to zero to free up memory
if (windowSize == 0)
return;
// FFT input & output buffers
_in = (float *) fftwf_malloc(sizeof(float) * _windowSize);
_out = (float *) fftwf_malloc(sizeof(float) * _windowSize);
// Hanning window
_hanning = (float *) malloc(sizeof(float) * _windowSize);
// normalize the window
double sum = 0.0;
for (int i=0; i < _windowSize; i++) {
_hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize))));
sum += _hanning[i];
}
double isum = 1.0 / sum;
for (int i=0; i < _windowSize; i++) {
_hanning[i] *= isum;
}
_logScale = (int *) malloc(sizeof(int) * _dataSize);
//float count = 0;
for (int i = 0; i < _dataSize; i++) {
_logScale[i] = 0;
}
_plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE);
}
FFTGraph::~FFTGraph()
{
// This will free everything
setWindowSize(0);
}
bool
FFTGraph::on_expose_event (GdkEventExpose* event)
{
redraw();
return true;
}
FFTResult *
FFTGraph::prepareResult(Gdk::Color color, string trackname)
{
FFTResult *res = new FFTResult(this, color, trackname);
return res;
}
void
FFTGraph::set_analysis_window(AnalysisWindow *a_window)
{
_a_window = a_window;
}
void
FFTGraph::draw_scales(Glib::RefPtr<Gdk::Window> window)
{
Glib::RefPtr<Gtk::Style> style = get_style();
Glib::RefPtr<Gdk::GC> black = style->get_black_gc();
Glib::RefPtr<Gdk::GC> white = style->get_white_gc();
window->draw_rectangle(black, true, 0, 0, width, height);
/**
* 4 5
* _ _
* | |
* 1 | | 2
* |________|
* 3
**/
// Line 1
window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin );
// Line 2
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + 1, height - v_margin );
// Line 3
window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin );
#define DB_METRIC_LENGTH 8
// Line 4
window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin );
// Line 5
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin );
if (graph_gc == 0) {
graph_gc = GC::create( get_window() );
}
Color grey;
grey.set_rgb_p(0.2, 0.2, 0.2);
graph_gc->set_rgb_fg_color( grey );
if (layout == 0) {
layout = create_pango_layout ("");
layout->set_font_description (get_style()->get_font());
}
// Draw logscale
int logscale_pos = 0;
int position_on_scale;
/* TODO, write better scales and change the log function so that octaves are of equal pixel length
float scale_points[10] = { 55.0, 110.0, 220.0, 440.0, 880.0, 1760.0, 3520.0, 7040.0, 14080.0, 28160.0 };
for (int x = 0; x < 10; x++) {
// i = 0.. _dataSize-1
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
}
*/
for (int x = 1; x < 8; x++) {
position_on_scale = (int)floor( (double)currentScaleWidth*(double)x/8.0);
while (_logScale[logscale_pos] < position_on_scale)
logscale_pos++;
int coord = (int)(v_margin + 1.0 + position_on_scale);
int SR = 44100;
int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize);
char buf[32];
if (rate_at_pos < 1000)
snprintf(buf,32,"%dHz",rate_at_pos);
else
snprintf(buf,32,"%dk",(int)floor( (float)rate_at_pos/(float)1000) );
std::string label = buf;
layout->set_text(label);
window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin - 1);
int width, height;
layout->get_pixel_size (width, height);
window->draw_layout(white, coord - width / 2, v_margin / 2, layout);
}
}
void
FFTGraph::redraw()
{
Glib::Mutex::Lock lm (_a_window->track_list_lock);
draw_scales(get_window());
if (_a_window == 0)
return;
if (!_a_window->track_list_ready)
return;
cairo_t *cr;
cr = gdk_cairo_create(GDK_DRAWABLE(get_window()->gobj()));
cairo_set_line_width(cr, 1.5);
cairo_translate(cr, (float)v_margin + 1.0, (float)h_margin);
// Find "session wide" min & max
float min = 1000000000000.0;
float max = -1000000000000.0;
TreeNodeChildren track_rows = _a_window->track_list.get_model()->children();
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
TreeModel::Row row = *i;
FFTResult *res = row[_a_window->tlcols.graph];
// disregard fft analysis from empty signals
if (res->minimum() == res->maximum()) {
continue;
}
if ( res->minimum() < min) {
min = res->minimum();
}
if ( res->maximum() > max) {
max = res->maximum();
}
}
if (!_show_normalized) {
min = -150.0f;
max = 0.0f;
}
//int graph_height = height - 2 * h_margin;
float fft_pane_size_w = (float)(width - 2*v_margin) - 1.0;
float fft_pane_size_h = (float)(height - 2*h_margin);
double pixels_per_db = (double)fft_pane_size_h / (double)(max - min);
cairo_rectangle(cr, 0.0, 0.0, fft_pane_size_w, fft_pane_size_h);
cairo_clip(cr);
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
TreeModel::Row row = *i;
// don't show graphs for tracks which are deselected
if (!row[_a_window->tlcols.visible]) {
continue;
}
FFTResult *res = row[_a_window->tlcols.graph];
// don't show graphs for empty signals
if (res->minimum() == res->maximum()) {
continue;
}
float mpp;
if (_show_minmax) {
mpp = -1000000.0;
cairo_set_source_rgba(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p(), 0.30);
cairo_move_to(cr, 0.5f + (float)_logScale[0], 0.5f + (float)( fft_pane_size_h - (int)floor( (res->maxAt(0) - min) * pixels_per_db) ));
// Draw the line of maximum values
for (int x = 1; x < res->length(); x++) {
if (res->maxAt(x) > mpp)
mpp = res->maxAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );
cairo_line_to(cr, X, Y);
mpp = -1000000.0;
}
mpp = +10000000.0;
// Draw back to the start using the minimum value
for (int x = res->length()-1; x >= 0; x--) {
if (res->minAt(x) < mpp)
mpp = res->minAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x - 1 > 0 && _logScale[x] == _logScale[x - 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );
cairo_line_to(cr, X, Y );
mpp = +10000000.0;
}
cairo_close_path(cr);
cairo_fill(cr);
}
// Set color from track
cairo_set_source_rgb(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p());
mpp = -1000000.0;
cairo_move_to(cr, 0.5, fft_pane_size_h-0.5);
for (int x = 0; x < res->length(); x++) {
if (res->avgAt(x) > mpp)
mpp = res->avgAt(x);
mpp = fmax(mpp, min);
mpp = fmin(mpp, max);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
continue;
}
cairo_line_to(cr, 0.5f + (float)_logScale[x], 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) ));
mpp = -1000000.0;
}
cairo_stroke(cr);
}
cairo_destroy(cr);
}
void
FFTGraph::on_size_request(Gtk::Requisition* requisition)
{
width = max(requisition->width, minScaleWidth + h_margin * 2);
height = max(requisition->height, minScaleHeight + 2 + v_margin * 2);
update_size();
requisition->width = width;;
requisition->height = height;
}
void
FFTGraph::on_size_allocate(Gtk::Allocation & alloc)
{
width = alloc.get_width();
height = alloc.get_height();
update_size();
DrawingArea::on_size_allocate (alloc);
}
void
FFTGraph::update_size()
{
currentScaleWidth = width - h_margin*2;
currentScaleHeight = height - 2 - v_margin*2;
float SR = 44100;
float FFT_START = SR/(double)_dataSize;
float FFT_END = SR/2.0;
float FFT_RANGE = log( FFT_END / FFT_START);
float pixel = 0;
for (int i = 0; i < _dataSize; i++) {
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
float freq_at_pixel;
pixel--;
do {
pixel++;
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
} while (freq_at_bin > freq_at_pixel);
_logScale[i] = (int)floor(pixel);
}
}